翻訳と辞書
Words near each other
・ Convolution for optical broad-beam responses in scattering media
・ Convolution of probability distributions
・ Convolution power
・ Convolution random number generator
・ Convolution reverb
・ Convolution theorem
・ Convolutional code
・ Convolutional Deep Belief Networks
・ Convolutional neural network
・ Convolutriloba
・ Convolvulaceae
・ Convolvulus
・ Convex lattice polytope
・ Convex metric space
・ Convex optimization
Convex polygon
・ Convex polytope
・ Convex position
・ Convex preferences
・ Convex set
・ Convex Software Library
・ Convex subgraph
・ Convex uniform honeycomb
・ Convex-tailed horned toad
・ Convex-vented horned toad
・ Convexia
・ Convexity (finance)
・ Convexity in economics
・ Convexity of radius
・ Convexoid operator


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Convex polygon : ウィキペディア英語版
Convex polygon

A convex polygon is a simple polygon (not self-intersecting) in which no line segment between two points on the boundary ever goes outside the polygon. Equivalently, it is a simple polygon whose interior is a convex set.〔(Definition and properties of convex polygons with interactive animation. )〕 In a convex polygon, all interior angles are less than or equal to 180 degrees, while in a strictly convex polygon all interior angles are strictly less than 180 degrees.
A polygon which is not convex is called concave.
==Properties of convex polygons==

The following properties of a simple polygon are all equivalent to convexity:
*Every internal angle is less than or equal to 180 degrees.
*Every point on every line segment between two points inside or on the boundary of the polygon remains inside or on the boundary.
*The polygon is entirely contained in a closed half-plane defined by each of its edges.
*For each edge, the interior points are all on the same side of the line that the edge defines.
*The angle at each vertex contains all other vertices in its edges and interior.
*The polygon is the convex hull of its edges.
Additional properties of convex polygons include:
*The intersection of two convex polygons is a convex polygon.
*Helly's theorem: For every collection of at least three convex polygons: if the intersection of every three of them is nonempty, then the whole collection has a nonempty intersection.
*Krein–Milman theorem: A convex polygon is the convex hull of its vertices. Thus it is fully defined by the set of its vertices, and one only needs the corners of the polygon to recover the entire polygon shape.
*Hyperplane separation theorem: Any two convex polygons have a separator line. If the polygons are closed and at least one of them is compact, then there are even two parallel separator lines (with a gap between them).
*Inscribed triangle property: Of all triangles contained in a convex polygon, there exists a triangle with a maximal area whose vertices are all polygon vertices.
*Inscribing triangle property: every convex polygon with area ''A'' can be inscribed in a triangle of area at most equal to 2''A''. Equality holds (exclusively) for a parallelogram.
*Inscribed/inscribing rectangles property: For every convex body C in the plane, we can inscribe a rectangle r in C such that a homothetic copy R of r is circumscribed about C and the positive homothety ratio is at most 2 and 0.5 \text(R) \leq \text(C) \leq 2 \text(r).
*The mean width of a convex polygon is equal to its perimeter divided by pi. So its width is the diameter of a circle with the same perimeter as the polygon.〔(【引用サイトリンク】title=What's the average width of a convex polygon? )
Every polygon inscribed in a circle (such that all vertices of the polygon touch the circle), if not self-intersecting, is convex. However, not every convex polygon can be inscribed in a circle.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Convex polygon」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.